#!/usr/bin/env python3 # -*- coding: utf8 -*- import json from datetime import datetime from urllib import request, parse, error import plotly.graph_objs as go import plotly.utils from flask import Flask, render_template from plotly.subplots import make_subplots from waitress import serve import os import sys import socket netdata_host = os.environ.get('NETDATA_HOST', 'http://localhost:19999') netdata_query_seconds = int(os.environ.get('NETDATA_QUERY_SECONDS', '200000')) netdata_query_points = int(os.environ.get('NETDATA_QUERY_POINTS', '3000')) site_refresh = int(os.environ.get('SITE_REFRESH', '0')) server_host = socket.gethostname() server_ip = socket.gethostbyname(server_host) server_port = os.environ.get('SERVER_PORT', '19998') app = Flask(__name__) def get_docker_data(q_context, q_dimension): netdata_url = f"{netdata_host}/api/v2/data" params = { 'group_by': 'instance', 'scope_contexts': q_context, 'dimensions': q_dimension, 'format': 'json', 'after': f'-{netdata_query_seconds}', 'points': f'{netdata_query_points}', 'group': 'average' } url = f"{netdata_url}?{parse.urlencode(params)}" with request.urlopen(url) as response: data = json.loads(response.read().decode()) return data['result'] def process_label(label): parts = label.split('@')[0].split('.') if parts and parts[0].startswith('cgroup_'): if parts[1] =='mem_usage': return f'mem_{parts[0][7:]}' else: return f'{parts[1]}_{parts[0][7:]}' return label def create_plot(): result_data_cpu = get_docker_data('cgroup.cpu','*') result_data_mem_usage = get_docker_data('cgroup.mem_usage', 'ram') fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.1, subplot_titles=('CPU-Nutzung der Docker-Container', 'Mem-Usage der Docker-Container')) def plot_data_function(data, row): if 'labels' in data and 'data' in data: labels = data['labels'] plot_data = data['data'] elif isinstance(data, list) and len(data) > 1: labels = data[0] plot_data = data[1:] else: print(f"Unerwartete Datenstruktur für Reihe {row}") return for i, label in enumerate(labels[1:], start=1): # Skip the first label (usually timestamp) if 'slice_system-slice' in labels[i]: continue y_values = [round(float(row[i]), 2) if row[i] is not None else None for row in plot_data] x_values = [datetime.fromtimestamp(row[0]) for row in plot_data] processed_label = process_label(label) trace = go.Scatter( x=x_values, y=y_values, mode='lines', name=processed_label ) fig.add_trace(trace, row=row, col=1) plot_data_function(result_data_cpu, row=1) plot_data_function(result_data_mem_usage, row=2) # Beschriftung für oberen Graphen wenn bei make_subplots shared_xaxes=false # fig.update_xaxes(title_text="Zeit", tickformat='%Y-%m-%d %H:%M:%S', tickangle=0, row=1, col=1) fig.update_xaxes(title_text="Zeit", tickformat='%Y-%m-%d\n%H:%M:%S', tickangle=0, row=2, col=1) fig.update_yaxes(title_text="CPU-Nutzung (%)", tickformat='.2f', rangemode='tozero', row=1, col=1) fig.update_yaxes(title_text="MemUsage (MiB)", tickformat='.0f', rangemode='tozero', row=2, col=1) fig.update_layout( height=1000, legend_title="Container", margin=dict(b=100), showlegend=True, paper_bgcolor='#a1bdd6', plot_bgcolor='#687a8a' ) return plotly.utils.PlotlyJSONEncoder().encode(fig) @app.route('/') def index(): plot = create_plot() return render_template('index.html', plot=plot, netdata_host=netdata_host, site_refresh=site_refresh) def check_url(url, timeout=5): try: with request.urlopen(url, timeout=timeout): print(f"Die Netdata-URL {url} ist erreichbar.", file=sys.stderr) except error.URLError as e: print(f"Fehler: Die URL {url} ist nicht erreichbar.", file=sys.stderr) print(f"Fehlermeldung: {str(e)}", file=sys.stderr) sys.exit(1) if __name__ == '__main__': # app.run(host='0.0.0.0', port=19998, debug=True) check_url(netdata_host) print(f"Dashboard started at http://{server_host}:{server_port} | http://{server_ip}:{server_port}", file=sys.stderr) serve(app, host="0.0.0.0", port=server_port)