135 lines
5.1 KiB
Python
Executable File
135 lines
5.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: utf8 -*-
|
|
import json
|
|
from datetime import datetime
|
|
from urllib import request, parse, error
|
|
|
|
import plotly.graph_objs as go
|
|
from flask import Flask, render_template
|
|
from plotly.subplots import make_subplots
|
|
from waitress import serve
|
|
import os
|
|
import sys
|
|
import socket
|
|
|
|
netdata_host = os.environ.get('NETDATA_HOST', 'http://localhost:19999')
|
|
netdata_query_seconds = int(os.environ.get('NETDATA_QUERY_SECONDS', '200000'))
|
|
netdata_query_points = int(os.environ.get('NETDATA_QUERY_POINTS', '3000'))
|
|
|
|
site_refresh = int(os.environ.get('SITE_REFRESH', '0'))
|
|
|
|
server_host = socket.gethostname()
|
|
server_ip = socket.gethostbyname(server_host)
|
|
server_port = os.environ.get('SERVER_PORT', '19998')
|
|
|
|
|
|
app = Flask(__name__)
|
|
|
|
def get_docker_data(q_context, q_dimension):
|
|
netdata_url = f"{netdata_host}/api/v2/data"
|
|
params = {
|
|
'group_by': 'instance',
|
|
'scope_contexts': q_context,
|
|
'dimensions': q_dimension,
|
|
'format': 'json',
|
|
'after': f'-{netdata_query_seconds}',
|
|
'points': f'{netdata_query_points}',
|
|
'group': 'average'
|
|
}
|
|
url = f"{netdata_url}?{parse.urlencode(params)}"
|
|
with request.urlopen(url) as response:
|
|
data = json.loads(response.read().decode())
|
|
return data['result']
|
|
|
|
def process_label(label):
|
|
parts = label.split('@')[0].split('.')
|
|
if parts and parts[0].startswith('cgroup_'):
|
|
if parts[1].startswith('mem_usage'):
|
|
return f'mem_{parts[0][7:]}'
|
|
elif parts[1].startswith('cpu'):
|
|
return f'cpu_{parts[0][7:]}'
|
|
else:
|
|
return f'{parts[1]}_{parts[0][7:]}'
|
|
return label
|
|
|
|
def create_plot():
|
|
result_data_cpu = get_docker_data('cgroup.cpu','*')
|
|
result_data_mem_usage = get_docker_data('cgroup.mem_usage', 'ram')
|
|
|
|
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.1,
|
|
subplot_titles=('CPU-Nutzung der Docker-Container', 'Mem-Usage der Docker-Container'))
|
|
|
|
def plot_data_function(data, row):
|
|
if 'labels' in data and 'data' in data:
|
|
labels = data['labels']
|
|
plot_data = data['data']
|
|
elif isinstance(data, list) and len(data) > 1:
|
|
labels = data[0]
|
|
plot_data = data[1:]
|
|
else:
|
|
print(f"Unerwartete Datenstruktur für Reihe {row}")
|
|
return
|
|
|
|
for i, label in enumerate(labels[1:], start=1): # Skip the first label (usually timestamp)
|
|
# docker-cgroups mit slice ... aussortieren, da solche nur kurzzeitig während ContainerBau
|
|
# aktiv sind
|
|
if 'slice_system-slice' in labels[i]:
|
|
continue
|
|
y_values = [round(float(row[i]), 2) if row[i] is not None else None for row in plot_data]
|
|
# Überprüfen, ob es sich um die CPU-Daten handelt und wenn Netdata da Werte > 1000 liefert diese anpassen
|
|
# dies war beim docker_buildx_buildkit-Container geschehen (20000 % CPU-Nutzung geht halt irgendwie nicht)
|
|
if row == 1: # Angenommen, Reihe 1 ist für CPU-Daten
|
|
y_values = [value / 1000 if value is not None and value > 1000 else value for value in y_values]
|
|
x_values = [datetime.fromtimestamp(row[0]) for row in plot_data]
|
|
processed_label = process_label(label)
|
|
|
|
trace = go.Scatter(
|
|
x=x_values,
|
|
y=y_values,
|
|
mode='lines',
|
|
name=processed_label
|
|
)
|
|
fig.add_trace(trace, row=row, col=1)
|
|
|
|
plot_data_function(result_data_cpu, row=1)
|
|
plot_data_function(result_data_mem_usage, row=2)
|
|
|
|
# Beschriftung für oberen Graphen wenn bei make_subplots shared_xaxes=false
|
|
# fig.update_xaxes(title_text="Zeit", tickformat='%Y-%m-%d %H:%M:%S', tickangle=0, row=1, col=1)
|
|
fig.update_xaxes(title_text="Zeit", tickformat='%Y-%m-%d\n%H:%M:%S', tickangle=0, row=2, col=1)
|
|
fig.update_yaxes(title_text="CPU-Nutzung (%)", tickformat='.2f', rangemode='tozero', row=1, col=1)
|
|
fig.update_yaxes(title_text="MemUsage (MiB)", tickformat='.0f', rangemode='tozero', row=2, col=1)
|
|
|
|
fig.update_layout(
|
|
height=1000,
|
|
legend_title="Container",
|
|
margin=dict(b=100),
|
|
showlegend=True,
|
|
paper_bgcolor='#a1bdd6',
|
|
plot_bgcolor='#687a8a'
|
|
)
|
|
|
|
return fig.to_html(full_html=False)
|
|
|
|
|
|
@app.route('/')
|
|
def index():
|
|
plot = create_plot()
|
|
return render_template('index.html', plot=plot, netdata_host=netdata_host,
|
|
site_refresh=site_refresh)
|
|
|
|
def check_url(url, timeout=5):
|
|
try:
|
|
with request.urlopen(url, timeout=timeout):
|
|
print(f"Die Netdata-URL {url} ist erreichbar.", file=sys.stderr)
|
|
except error.URLError as e:
|
|
print(f"Fehler: Die URL {url} ist nicht erreichbar.", file=sys.stderr)
|
|
print(f"Fehlermeldung: {str(e)}", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
if __name__ == '__main__':
|
|
# app.run(host='0.0.0.0', port=19998, debug=True)
|
|
check_url(netdata_host)
|
|
print(f"Dashboard started at http://{server_host}:{server_port} | http://{server_ip}:{server_port}", file=sys.stderr)
|
|
serve(app, host="0.0.0.0", port=server_port)
|